UUCMS. No.	
B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU – 560004 SEMESTER END EXAMINATION – SEPT/OCT 2023	
M.Sc in Mathematics – 4 th Semester	
MAGNETOHYDRODYNAMICS	
Course Code: MM407T Duration: 3 Hours	QP Code: 14007 Max marks: 70
Instructions: 1) All questions carry equal marks. 2) Answer any FIVE full questions.	
1. (a) State and explain Faraday's law of induction and show that $\nabla \times E = \frac{-\partial \vec{B}}{\partial t}$, we quantities have their usual meaning.	where the
(b) Derive Gauss law for dielectric materials in its standard form.	(7+7)
 2. (a) Prove that the tangential component of the electric field is continuous across interface. (b) Using Ampere's law deduce Vector potential, Scalar potential and Lorentz for 	
3. (a) Derive the equation of conservation of momentum in its usual form (b) Derive the magnetic induction equation in the form $\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{q} \times \vec{B}) + \frac{1}{R_m}$ where the quantities have their usual meaning.	$ abla^2 ec{B}$, (7+7)
 4. (a) Explain the concept of frozen-in-phenomenon. Establish this fact by providin appropriate theorem. (b) Show that the angular velocity of a perfectly conducting fluid body rotating s about the axis of symmetry in a magnetic field does not change along the magnines. 	steadily gnetic field
5. (a) Define force free magnetic field. Then prove the following.	(7+7)
(i) $\alpha = \frac{\vec{B}.(\nabla \times \vec{B})}{ \vec{B} ^2}$ (ii) $\alpha = \frac{\vec{B}.(\nabla \times \vec{B}).\nabla \times (\nabla \times \vec{B})}{ \nabla \times \vec{B} ^2}$	

1

- (b) State and prove Chandrashekar's theorem on force free magnetic field.
- (6+8)
 6. (a) In an infinitely conducting fluid moves parallel to the vertical z-axis of the Cartesian coordinate system (x, y, z) with velocity w and the magnetic field lines act in y-direction and all the variables are independent of x and y the show that H and ρ satisfies the following equations

 Dh/Dt = -H ∂w/∂z and Dp/Dt = -ρ ∂w/∂z.

 (b) Explain Bennet pinch and any two instabilities associated with it.
 (7+7)

 7. (a) Derive an Alfven wave equation in an incompressible perfectly conducting fluid in the presence of a suitable magnetic field.
 (b) Derive equations of equi-partition of energy by Alfven's waves.
 (7+7)
 8. Obtain the velocity and temperature distributions for one-dimensional Hartmann flow. Discuss the effect of magnetic field on the same.
